Page 53 - Ingeniantes 811 interactivo
P. 53
Revista Ingeniantes 2021 Año 8 No. 1 Vol. 1
[3] M. Coro Arismendi and Conabio, “La crisis de los [15] S. A. Chechetka, Y. Yu, M. Tange, and E. Mi-
polinizadores.,” Biodiversitas, no. 85, pp. 1–5, 2009. yako, “Materially Engineered Artificial Pollinators,”
[4] SAGARPA, “Monografía del Jitomate,” Monogr. Chem, vol. 2, no. 2, pp. 224–239, 2017.
Cultiv., p. 10, 2010. [16] Z. De-An, L. Jidong, J. Wei, Z. Ying, and C. Yu,
[5] C. H. Vergara and P. Fonseca-Buendía, “Pollina- “Design and control of an apple harvesting robot,”
tion of greenhouse tomatoes by the Mexican bum- Biosyst. Eng., vol. 110, no. 2, pp. 112–122, 2011.
blebee Bombus ephippiatus (Hymenoptera: Api- [17] K. Tanigaki, T. Fujiura, A. Akase, and J. Ima-
dae),” J. Pollinat. Ecol., vol. 7, pp. 285–291, 2012. gawa, “Cherry-harvesting robot,” Comput. Electron.
[6] A. Rortais et al., “Risk assessment of pesticides Agric., vol. 63, no. 1, pp. 65–72, 2008.
and other stressors in bees: Principles, data gaps [18] D. M. Bulanon and T. Kataoka, “Fruit detection
and perspectives from the European Food Safe- system and an end effector for robotic harvesting of
ty Authority,” Sci. Total Environ., vol. 587–588, pp. Fuji apples,” Agric. Eng. Int. CIGR, vol. 12, no. 1, pp.
524–537, 2017. 203–210, 2010.
[7] A. Chandrasekaran, K. Linderman, and R. [19] M. J. Solga, J. P. Harmon, and A. C. Ganguli,
Schroeder, “The role of project and organizational “Timing is Everything: An Overview of Phenological
context in managing high-tech R&D projects,” Pro- Changes to Plants and Their Pollinators,” Nat. Areas
duction and Operations Management. pp. 560–586, J., vol. 34, no. 2, pp. 227–234, 2014.
2015. [20] J. L. Hatfield and J. H. Prueger, “Agroecology:
[8] Q. Feng, W. Zheng, Q. Qiu, K. Jiang, and R. Guo, Implications for Plant Response to Climate Chan-
“Study on strawberry robotic harvesting system,” in ge,” in Crop Adaptation to Climate Change, 2011,
CSAE 2012 - Proceedings, 2012 IEEE International pp. 27–43.
Conference on Computer Science and Automation
Engineering, 2012, vol. 1, pp. 320–324.
[9] L. R. V. González, “El proceso de desarrollo de
productos tecnológicos entre las universidades y
las MIPYMES mexicanas: Una carrera de obstácu-
los,” J. Technol. Manag. Innov., vol. 4, no. 4, pp.
120–129, 2009.
[10] M. Kaul, “Reproductive biology in tomato,” in
Genetic improvement on tomato., 2nd ed., Sprin-
ger-Verlag, 2012, pp. 42–43.
[11] A. K. Torres Galindo, “Development of a multis-
pectral system for precision agriculture applications
using embedded devices,” Sist. y Telemática, vol.
13, no. 33, p. 27, 2015.
[12] E. G. M. Garcia Chora Daniel, Alvarez Martinez
SGuido, “Raspberry Pi y Arduino: Semilleros en in-
novación tecnológica para la agricultura de preci-
sión,” Rev. Tecnol. la informática y las telecomuni-
caciones, vol. 2, no. 1, pp. 74–82, 2018.
[13] H. C. J. Godfray et al., “Food security: The cha-
llenge of feeding 9 billion people,” Science (80-. ).,
vol. 327, no. 5967, pp. 812–818, 2010.
[14] T. Yuan, S. Zhang, X. Sheng, D. Wang, Y. Gong,
and W. Li, “An autonomous pollination robot for hor-
mone treatment of tomato flower in greenhouse,” in
2016 3rd International Conference on Systems and
Informatics, ICSAI 2016, 2017, pp. 108–113.
49